Ref No:

Sri Krishna Institute of Technology Bengaluru

LABORATORY PLAN

Academic Year 2019-2020

Program:	BE		
Semester :	2		
Course Code:	18PHYL26		
Course Title:	Engineering Physics Lab		
Credit / L-T-P:	2 / 0-0-2		
Total Contact Hours:	42		
Course Plan Author:	Arun Kumar A M		

Academic Evaluation and Monitoring Cell

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	4
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	6
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	9
5. Curricular Gap and Experiments	10
6. Experiments Beyond Syllabus	10
D. COURSE ASSESSMENT	10

1. Laboratory Coverage	10
2. Continuous Internal Assessment (CIA)	11
E. EXPERIMENTS	11
Experiment 01: Newtons Ring	11
Experiment 02: Dielectric constant	
Experiment 03: Laser Diffraction	16
Experiment 04: Series and Parallel LCR resonance	17
Experiment 05: Fermi Energy	21
Experiment 06: Rigidity Modulus by Torsional Pendulum	23
Experiment 07: Transistor characteristics	25
Experiment 08 : Photo diode characteristics	28
Experiment 09: Young's modulus by Single Cantilever method	30
Experiment 10 : Series and Parallel Combinations of Spring	32
Experiment 11 : Magnetic Field	
Experiment 12 : Numerical Aperture	
F. Content to Experiment Outcomes	39
1. TLPA Parameters	

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	All
Year / Semester :	1/1	Academic Year:	2019-20
Course Title:	Engineering Physics Lab	Course Code:	18PHYL16
Credit / L-T-P:	01 / 2-0-0	SEE Duration:	120 Minutes
Total Contact Hours:	62 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	1 Assignment / Experiment
Lab. Plan Author:	Arun Kumar A M	Sign	Dt :
Checked By:	Ravi S	Sign	Dt :

2. Laboratory Content

Exp	Title of the Experiments	Lab	Concept	Bloo
t.		Hour	_	ms
		S		Leve
				1
1	Radius of curvature of plano convex lens using	2	Radius of	L3
	Newton's rings.		Curvature	
2	Calculation of Dielectric constant by RC	2	Dielectric	L3
	charging and Discharging		Constant	
3	Determine Wavelength of semiconductor laser	2	Wavelength	L3
	using Laser diffraction by calculating grating			
	constant.			
4	Study Series and parallel LCR resonance and	2	Band	L3
	hence Calculate inductance, band width and		Width and	
	quality factor using series LCR Resonance		Quality	
			Factor	
5	Estimation of Fermi Energy of Copper	2	Fermi	L3
			Energy	
6	Study of Rigidity modulus by Torsional pendulum.	2	Rigidity	L3
			Modulus	
7	Study of input and output Transistor	2	Transistor	L3
	characteristics and hence calculate input		Characteris	
	resistance, Output Resistance, alpha and beta		tics	
8	Study of photo diode characteristics.	2	Photo	L3
			diode	
			Characteris	
			tics	
9	Young's modulus of a beam by Single	2	Young's	L3
	Cantilever experiment.		Modulus	
10	Determination of spring constants in Series and	2	Spring	L3
	Parallel combination		Constant	
11	Determination of Magnetic field intensity at the	2	Magnetic	L3
	center of a circular coil carrying current.		Field	
12	Determine Acceptance angle and Numerical	2	Acceptance	L3
	aperture of an optical fiber		angle and	
			Numerical	
			Aperture.	

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt	Details	Expt.	Availability
		in	
		book	
Α	Text books (Title, Authors, Edition, Publisher,	-	-
	Year.)		
1	Text books		In Lib / In Dept
	V K Mehta – Text Book on Electronics		
			-
2	Reference books		
	S P Basavaraju – Text Book on Engineering		In Lib / In Dept
	Physics		
			-
3	Others (Web, Video, Simulation, Notes etc.)		
	Software loots for Design	-	-
F	Recent Developments for Research		_
F			
1	Others (web, video, Simulation, Notes etc.)	-	
	NPTEL:		
	https://www.youtube.com/watch?		
	V=N077WLVECCP		
2	V9XNU/ZWKXE-WCGP		
	NPTEL: Theory of Elasticity		
2	https://youtu.be/eICv1p8Wjg1		
5	Notion : <u>https://youtu.be/5nhVNKg-6K4</u>		
A	HC verma		
4	Optical Fiber:		
	https://youtu.be/jnjjW11s9_s		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Ex	Lab.	Lab.	Topic / Description	Sem	Remar	Blooms
pt.	Code	Name			ks	Level
1	18PHYL16	Engineering	The student should have acquired	Lower		Knowledge
		Physics Lab	the knowledge of Basic laws, theories, phenomenon, definitions, expressions, advanced research in formations and techniques required in modern Physics and material science	Standards		L1

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Ex	Topic / Description	Area	Remarks	Bloom
pt.				s Level
1				

B. Laboratory Instructions

1. General Instructions

SN	Instructions	Remarks
0		
1	Observation book and Lab record are compulsory.	
2	Students should report to the lab as per the time table.	
3	After completion of the Experiments, certification of	
	the concerned staff in-charge in the observation book	
	is necessary.	
4	Should enter the readings / observations into the	
	observation book while performing the experiment.	
5	The record of observations along with the detailed	
	experimental procedure of the experiment in the	
	Immediate last session should be submitted and	
	certified staff member in - charge.	
6	When the experiment is completed, should disconnect	

	the setup made by them, and should return all the components/instruments taken for the purpose.	
7	Any damage of the equipment or burn-out	
	components will be viewed seriously by putting	
	penalty	
8	Completed lab assignments should be submitted in the	
	form of a Lab Record in which you have to write the	
	Aim, apparatus, procedure, circuit diagram,	
	Observations, calculations and results.	

2. Laboratory Specific Instructions

SN	Specific Instructions	Remarks
0		
1	Should be dressed in Lab Uniform	
2	Enter in Lab Login Register	
3	Setup the Experiments	
4	Make the circuit connection	
5	Calculations and getting it mandatory	
6	Scientific calculator and graphs are compulsory	
7	Write the Record	

C. OBE PARAMETERS

1. Laboratory Outcomes

Ex	Lab	COs / Experiment	Teac	Concept	Instr	Assess	Bloo
pt.	Code #	Outcome	h.		Method	ment	ms'
			Hou			Metho	Level
			rs			d	
-	-	At the end of the	-	-	-	-	-
		experiment, the student					
		should be able to					
1	18PHYL16	Students should be	4	Oscillat	Experiment	Slip Test	L3
		able to-		ions			
		Apply the knowledge of					
		oscillations,					
		frequency and					
		resonance concept					
		and their practical					

		applications					
2	18PHYL16	∪se and identify the Elastic moduli and Moment of inertia of given materials	4	Elastici ty	Experiment	Slip Test	L3
3	18PHYL16	Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current.	8	Physic al optics and Electro magnet ic theory.	Experiment	Slip Test	L3
4	18PHYL16	Understand and use the principles of operations of optical fibers and semiconductor devices using a simple circuits.	8	Materia I physics	Experiment	Slip Test	L3
-		Total	24	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt	Application Area	CO	Leve
			1
1	Used in Clocks, Fax Machine and Radio Stations.	CO1	L3
2	Resonators are used in particle accelerator,	CO1	L3
	photonic devices, cars.		
3	The elastic moduli measures the stiffness of the building materials.	CO2	L3
4	The knowledge of torque is important in the operation of electric motors, gyroscopes, etc.	CO2	L3
5	Lasers find vast applications in Industry, medical, scientific fields.	CO3	L3
6	Fermi energy is applied in determining the electrical and thermal characteristics of solids.	CO3	L3
7	Used in Remote Control, CD players, Television,	CO4	L3
	switching circuits etc.		

8	Optical fibers are used in telecommunication	CO4	L3
	companies to transmit telephone signals.		
т.			

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Ex	Maj	opin	n Mappi Justification for each CO-PO pair L		Leve
pt.		2	ng		1
1			Level		
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L3	Engineering Knowledge: Acquisition of Engineering knowledge is	L3
			Apply	required to understand the concept of oscillations and resonance to	
				apply it in use of clocks, scientific instruments.	
1	CO1	PO2	L3	Problem Analysis: To solve the problems in mechanical and electrical	L3
				engineering field requires the knowledge of frequency and resonance to	
	CO1	DOo		use it in different types of oscillatory system.	
	001	PO3	L3	plastight and Development of solution. The knowledge of resonance and	L3
				elasticity is required in designing and developing the LCR clicuit and	
1	CO1	POA	13	Modern tool Usage: Various modern tool usage is required for analysis	13
–		104	L3	and interpretation of resonance SHM and spring constant	L3
1	CO1	PO5	3	No Mapping – No tool content.	
1	CO1	PO6	3	The engineer and society: The knowledge of applications of oscillations	13
-	001		-5	and resonance is required to the engineer and society in day to day life.	
1	CO1	PO7	L3	No Mapping – This does not have any impact on society.	
1	CO1	PO8	L3	No Mapping – the content is not related to professional ethics.	
1	CO1	PO9	L3	Individual and Team work: To understand the functions and properties of	L3
		Ū	•	passive electrical devices requires the Individual and team work to	
				perform the experiments.	
1	CO1	PO10	L3	No Mapping – There is no design and document, hence no mapping.	
1	CO1	PO11	L3	No Mapping – There is no project management. Hence no mapping.	
1	CO1	PO12	L3	Life long learning: The understanding of the applications of LCR and	L3
				spring constant is essential in day to day learning.	
2	CO2	PO1	L3	Engineering Knowledge: The acquisition of engineering knowledge of	L3
		50		Elasticity required in the study civil and mechanical engineering field.	
2	CO2	PO2	L3	Problem Analysis: Problem analyzing of different material requires the	L3
	000	D O 4		knowledge of elasticity.	1.5
2	CO2	PO3	L3	Design and Development of solution: Designing and developing the	L3
				solution for the study of Rigidity modulus and young's modulus requires	
2	CO_{2}		10	Ine knowledge of elasticity. Medern tool usage: Medern tools require the knowledge of elasticity to	12
2	002	F04	Ľ٦	analyze and interpret the Rigidity modulus and Young's modulus study	L3
2	CO2	POs	3	No Mapping – No tool content	
2	CO2	PO6	 3	The engineer and society. The engineer and society require the	13
-			-5	knowledge of elasticity to know the applications of rigidity modulus and	
				Young's modulus in day to day life.	
2	CO2	PO7	L3	No Mapping – This does not have any impact on society.	
2	CO2	PO8	L3	No Mapping – The content is not related to professional ethics.	
2	CO2	PO9	L3	Individual and team work: Individual and team work is required to study	L3
				the functions of Rigidity and Young's modulus used in projects.	

2	CO2	PO10	2	No Mapping – There is no design and document, hence no mapping	
2	CU2	PO11	 >	No Mapping – There is no project management involved here. Hence no	
		, 011	<u>د</u> ے	mapping mere is no project management involved here. Hence no	
2	CO2	P()12	12	Life long learning. The life long learning of elasticity is required to	12
	002	1 012	L3	recognize and identify the application of rigidity modulus and Young's	LS
				modulus in day to day learning	
3	CO3	PO1	3	Engineering knowledge. The acquisition of engineering knowledge is	13
		101	LJ	required to understand interaction of radiation with matter in medical and	L3
				communication field and analysis of Maxwell's equation in electrical and	
				communication engineering filed.	
3	CO3	PO2	L3	Problem Analysis: Problem analysis of the material structure using free	L3
			-0	electron theory and problems in communication system requires the	_5
				knowledge of electric and magnetic field.	
3	CO3	PO3	L3	Design and Development of solution: The design and development of	L3
		-	-	experiment setup is required to study the process of diffraction, magnetic	•
				field and newtons ring.	
3	CO3	PO4	L3	Modern tool usage: Modern tool uses the concept of physical optics and	L3
				electromagnetic theory to analyze and interpret the study of diffraction,	
				interference and electromagnetic field.	
3	CO3	PO5	L3	No Mapping – No tool content.	
3	CO3	PO6	L3	The engineer and society: The society requires to study the applications	L3
				of diffraction grating, magnetic field and newtons ring in day to day life.	
3	CO3	PO7	L3	No Mapping – This does not have any impact on society.	
3	CO3	PO8	L3	No Mapping – The content is not related to professional ethics.	
3	CO3	PO9	L3	Individual and team work is required to study the experiments of	L3
				diffraction grating, magnetic field and newtons ring in day to day life.	
3	CO3	PO10	L3	No Mapping – There is no design and document, hence no mapping.	
3	CO3	PO11	L3	No Mapping – There is no project management. Hence no mapping.	L3
3	CO3	PO12	L3	Life long Learning: The life long learning of laser is required to identify the	L3
				application in day to day life.	
4	CO4	PO1	L3	Engineering knowledge: The acquisition of engineering knowledge is	L3
				required to understand band theory of solids which is required in	
				understanding of different electronic components.	
4	CO4	PO2	L3	Problem analysis: The problem analysis is required to identify the different	L3
				materials using band theory of solids.	
4	CO4	PO3	L3	Design and Development of solution: The design and development of	L3
				solution is required to study the process of optical fiber, photo diode and	
	00.			transistor experiments.	1.5
4	CO4	PO4	L3	Modern tool usage: Modern tools require the analysis and interpretation	L3
<u> </u>	001			of working of optical fiber, photo diode and transistor.	
4	CO4	P05		No Mapping - No tool content.	
4	04	P06	L3	Ine engineer and society. The engineer and society need to know the	L3
	<u> </u>			Applications of optical liber, photo diode and transistor in day to day the.	
4	CO4	P07		No Mapping – This does not have any impact on society.	
4		PUð	<u> </u>	Individual and team work, individual and team work is required to	
4		FUY	∟3	individual and learn work. Individual and learn work is required to	∟3
				learning which are used in projects	
4	CO4		1.2	No Mapping - There is no design and document honce no mapping	
4	CO4		<u>∟</u> 3	No Mapping – There is no design and document, hence no mapping.	
4			<u> </u>	life long loarning. The life long loarning of comiconductors and antical	
4		FU12	Ľ٢	there is required to recognize and identify the application of the	Ľ٢
				experiments in day to day work	
1	1				

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes				Р	ro	gra	am	0	ut	co	me	es				-
Ex	CO.#	At the end of the	Р	P	P	Р	Р	P	Р	Р	Р	P	Р	Р	Р	P	P	Le
pt.		experiment student	Ο	Ο	0	0	Ο	Ο	0	0	0	0	0	0	S	S	S	vel
		should be able to	1	2	3	4	5	6	7	8	9	1	1	1	0	0	0	
						1					1	0	1	2	1	2	3	
1	18PHYL20	Students should	V	V	V	V	-	V	-	-	V	-	-	V	-	-	-	L3
		be able to-																
		Apply the knowledge																
		of oscillations,																
		frequency and																
		resonance concept																
		and their practical																
		applications																
1	18PHYL26	Use and identify the	V	V	V	V	-	1	-	-	V	-	-	V	-	-	-	L3
		Elastic moduli and																
		Moment of inertia																
		of given materials																
2	18PHYL26	Understand and	V	1	1	1	-	1	-	-	1	-	-	1	-	-	-	L3
		apply the concept of																
		Interference of																
		light Diffraction of																
		light Fermi energy																
		and magnetic																
		effect of current																
2	18PHYL26	Inderstand and	V	√	1	V	-	√	-	-	1	-	-	1	-	-	_	L3
		the principles of																
		onorations of																
		Operations of																
		Semiconductor																
		uevices using a																
		simple circuits.	-		-	-		-			-			-				
-	18PHYL26	Average attainment (1,	2	3	2	2		3			2			2				-

		2, or 3)								
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design /								
		Development of Solutions; 4. Conduct Investigations of								
		Complex Problems; 5. Modern Tool Usage; 6. The Engineer								
		and Society; 7.Environment and Sustainability; 8.Ethics;								
		9.Individual and Teamwork; 10.Communication; 11.Project								
		Management and Finance; 12.Life-long Learning;								
		S1.Software Engineering; S2.Data Base Management; S3.Web								
		Design								

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Exp	Gap Topic	Actions	Schedule	Resources	РО
t		Planned	Planned	Person	Mapping
1					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Exp	Gap Topic	Actions	Schedule	Resources	PO
t		Planned	Planned	Person	Mapping
1					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Un	Title	Teac	N	Io . o	CO	Leve					
it		hing	CI	CI	CI	Asg	Asg	Asg	SE		ls
		Hou	A-1	A-2	A-3	-1	-2	-3	E		
		rs									
1	Radius of curvature of	02	1	-	1	-	-	-	1	CO3	L3
	plano convex lens using										
	Newton's rings.										
2	Calculation of Dielectric	02	1	-	1	-	-	-	1	CO4	L3
	constant by RC charging										
	and Discharging										

3	Determine Wavelength	02	1	-	1	-	-	-	1	CO3	L3
	of semiconductor laser										
	using Laser diffraction										
	by calculating grating										
	constant.										
4	Study Series and parallel	02	1	-	1	-	-	-	1	CO1	L3
	LCR resonance and										
	hence Calculate										
	inductance, band width										
	and quality factor using										
	series LCR Resonance										
5	Estimation of Fermi	02	1	-	1	-	-	-	1	CO3	L3
	Energy of Copper										
6	n & I by Torsional	02	1	-	1	-	-	-	1	CO2	L3
	pendulum.										
7	Study of input and	02	-	1	1	-	-	-	1	CO4	L3
	output Transistor										
	characteristics and hence										
	calculate input										
	resistance, ^ alpha and										
	° beta										
8	Draw photo diode	02	-	1	1	-	-	-	1	CO4	L3
	characteristics and										
	calculate power										
	responsivity									<u> </u>	
9	Young's modulus of a	02	-		1	_	_	-	1	02	L3
	beam by Single										
10	Cantilever experiment.	02		1	1				1	CO1	12
	Determination of spring	02		1	, I			_	1		L3
	constants in Series and										
11	Parallel combination	02		1	1				1	CO_2	12
	Determination of	02						_	L	003	∟ı
	Magnetic field intensity										
	at the center of a circular										
	coll carrying current (by										
12	aeriection method).	02	_	1	1	_			1	CO4	10
12	Determine Acceptance	02						_			∟ 3
	angle and Numerical										

	aperture of an optical fiber										
	11001										
-	Total	24	4	4	4	0	0	0	12	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation Weightage in		СО	Levels
	Marks		
CIA Exam – 1	40	CO1, CO2, CO3, CO4.	L3
CIA Exam – 2	40	CO1, CO2, CO3, CO4.	L3
CIA Exam – 3	40	CO1, CO2, CO3, CO4.	L3
Assignment - 1	00	-	-
Assignment - 2	00	-	-
Assignment - 3	00	-	_
Seminar - 1	00	-	-
Seminar - 2	00	-	-
Seminar - 3	00	-	-
Other Activities – define –		-	-
Slip test			
Final CIA Marks	40	-	-

SN	Description	Marks			
0					
1	Writeup	16 Marks			
2	Experimental setup	10 Marks			
3	Experiment conduction	40 Marks			
4	Calculation, graph and results	20 Marks			
5	Vivoce	14 Marks			
-	Total	100 Marks			

E. EXPERIMENTS

Experiment 01: Newtons Ring

- Experiment 1 Marks 16 Date Date	
-----------------------------------	--

	No.:	Planned Conduc ted						
1	Title	Newtons Ring						
2	Course Outcomes	Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current.						
3	Aim	To determine the radius of curvature of a given Plano-convex lens using the method of Newton's rings.						
4	Material / Equipment Required	Traveling microscope, Plano-convex lens. Glass slide, Sodium light, Beam splitter						
5	Theory, Formula, Principle, Concept	The radius of curvature of a given Plano-convex lens is given by,						
		$R = \frac{(D_m^2 - D_n^2)_{avg}}{4(m-n)\lambda} m$ Where, $D_{m \ \square} - \text{diameter of the m^{th} bright ring, m}$ $D_{n \ \square} - \text{diameter of the n^{th} bright ring, m}$ $(m - n) \ \square - \text{difference between the m^{th} and n^{th} bright rings}$ $\lambda - \square \text{ wavelength of sodium light = 5893 Å}$						
6	Procedure	The apparatus is set up as shown in the figure. The travelling microscope is placed such that its objective is directly above the plano-convex lens. The inclined glass plate is tilted (at 45° to the incident light beam) so that the light rays from the sodium vapour lamp are reflected on the plane glass plate, and the field of view is brightly illuminated. The focus of the microscope is adjusted such that Newton's Rings are clearly seen. Travelling microscope screw (in vertical mode) is moved such that the cross wire is tangent to the 8 th bright ring on the left and the corresponding travelling microscope reading [TR=MSR+(CVDXLC)] is recorded. Similarly the readings corresponding to 7 th , 6 th are recorded. Same procedure is followed for the right side rings also from 1 st to 8 th ring. Diameter of the each ring is found. Then, $D_m^2 - D_n^2$ is calculated by successive difference method for (m-n) = 3. Then radius of curvature of the plano-convex lens is found using the formula						
		$R = \frac{(m-n)\lambda g}{4(m-n)\lambda} m$						
7	Block Diagram	Sodium Light						
		Plano Convex Lens						

8	Observation Table				-							
		Ring no. (m)	T Rea	M ding	Diam eter D _m = L _m -	D _m ² (m²)	Ring no. (n)	T Rea	M ding	Diamet er Dn = L _n	D _n ² (m²)	D _m ²- D _n ² (m²)
			t Lm	ht R _m	R _m (mm)			t Lei t	ht Rn	- Kn (mm)		
		6					3					
		5					2					
		4					1					
							(D _m ²- D ₁	n ²) _{avg =}				
9	Sample Calculations	$R = \frac{1}{2}$	$D_m^2 - \frac{1}{4(m-1)}$	$\frac{D_n^2}{-n}$	т							
10	Graphs	NO gra	phs									
11	Results & Analysis	The radius of curvature of the given plano-convex lens using the method of Newton's rings is found to be R=m.										
12	Application Areas	To Mea	sure t	he Wa	ivelengt	h of lig	ght.					
13	Remarks											
14	Faculty Signature with Date											

Experiment 02: Dielectric constant

-	Experiment	1	Marks	16	Date		Date		
	No.:				Planned		Conduct		
							ed		
1	Title	Die	electric co	onstant					
2	Course	Un	Understand and use the principles of operations of optical						
	Outcomes fibers and semiconductor devices using a simple cir				circuits				
3	Aim	Calculation of Dielectric constant by RC charging a					g and		
		Discharging							
4	Material /	5V	DC regul	lated pow	ver supply	, digital	stop clock	Χ,	
	Equipment	digital voltmeter, resistor of known value, capacitor of							
Required known dimensions, patch cords.									
5	Theory,	Die	electric co	onstant,					
	Formula,								
					~				

	Principle, Concept	$K = \frac{dt_{1/2} X 10^{-6}}{0.693 \varepsilon o A R}$
		Where, A is area in m^2 , A=1 x b (1=2.5 cm and b = 1.5 cm)
		d is the thickness of the material in mm,
		R is the resistance in ohms,
		$T_{1/2}$ is in seconds,
	D	$\varepsilon o = 8.854 \times 10^{-12}$ F/m, is the permitivity of free space
6	Procedure,	CHARGING MODE The toggle switch S is set to charge mode and simultaneously the digital stop clock is set to start position. At this instant the capacitor get charged to higher voltage, immediately start noting down the voltage readings at every 5 seconds interval from zeroth second until V becomes constant (say two consecutive readings remain constant or upto 100sec). The voltage readings are entered in the tabular column, under charge mode. NOTE: The readings must be $V = 0$ for $t = 0$ [This can be achieved by shorting two ends of the capacitor].
		DISCHARGING MODE When V is maximum in charge mode reset the timer to zero using reset button of digital stop clock, immediately change the toggle switch S to discharge mode and record the voltage in similar way as in charge mode. The voltage readings are entered in the tabular column, under discharge mode. For $t = 0$, the same maximum value of V during charge mode to be retained. A graph is plotted with time t in seconds along X – axis and voltage V in volts along Y – axis. The point where both the charge mode curve and discharge mode curve intersect: from there drop a perpendicular line to

Copyright ©2017. cAAS. All rights reserved.

			$(\Lambda \Lambda)$	
	(secon	Charac	V) Diacharr	
	ds)	Charge	Discharg	
	,	mode	e mode	
	0			
	5			
	10			
	15			
	20			
	25			
	30			
	35			
	40			
	45			
	50			
	55			
	60			
	65			
	70			
	75			
	80			
	85			
	90			
	95			
	100			
		1	<u> </u>	
9 Sample	$K = \frac{dt_{1/2} X 10^{-6}}{0.602 c_{2} A B}$			
Calculations	0.093 <i>EOAK</i>			

10	Graphs, Outputs	Charge () () () () () () () () () ()
11	Degra145 9-	The velue of the dial stric constant of the
	Kesults &	i ne value of the dielectric constant of the
	Analysis	material in the capacitor is
12	Application	Can be used in switching circuits.
	Areas	
13	Remarks	
14	Faculty	
	Signature	
	with Date	

Experiment 03: Laser Diffraction

-	Experiment No.:	3	Marks	Date Planned		Date Conduc ted	
1	Title			Diffrac	ction		

2	Course Outcomes	Understand and apply the concept of Interference of light, Diffraction of light, Fermi energy and magnetic effect of current
3	Aim	To study the diffraction of laser light and hence to determine its wavelength.
4	Material / Equipment Required	Diode laser source, grating with holder, scale, screen and thread.
5	Theory, Formula, Principle, Concept	$\lambda = d \sin \theta_m(m)$ Where, λ = wavelength of laser light measured in m d = grating constant measured in m Example: For 500 number of lines per mm of a grating 'd' can be calculated as below $d = \frac{1 \times 10^{-3} m}{500}$
		$sin\theta_m = \frac{X}{\sqrt{R^2 + X^2}}$ where m = difference between the order of spots θ_m = angle of diffraction for m th order spot x_m = distance between Zero th order spot and m th order spot measured in m R = distance between screen and grating measured in m
6	Procedure	 Place the laser source on the holder and mount on the heavy base. Place the grating in its holder and the screen is placed at a distance of 3 to 4 meter. The grating is kept between the laser

9	Sample Calculations	$\lambda = d \sin \theta_m(m)$
		$\sin\theta_m = \frac{X}{\sqrt{R^2 + X^2}}$
10	Graphs	No graphs
11	Results &	The wavelength of the given Laser light
	Analysis	source ism.
12	Application	To measure the Wavelength of light.
	Areas	
13	Remarks	
14	Faculty	
	Signature with	
	Date	

Experiment 04: Series and Parallel LCR resonance

-	Experiment No.:	4	Marks		Date Planned		Date Conduc	
1	Title	Se	ries and p	oarallel I	CR reson	ance	lea	
2	Course Outcomes	A	Apply the knowledge of oscillations, frequency and resonance concept and their practical					
					applica	tions		
3	Aim	St Ca us	Study the series and parallel LCR resonance and hence Calculate inductance, band width and quality factor using series LCR Resonance					
4	Material / Equipment Required	Aı Ca	udio fre apacitor	equenc s, resis	y oscilla tors, mi	ator, in Iliamme	ductano eter	ce coil,
5	Theory, Formula, Principle, Concept	1) T	The resonanc	e frequency Where,	for the circuit $f_{r} = \frac{1}{2\pi\sqrt{2\pi}}$ L= Valu	is given by LC Hz. Je of In	ductanc	;e =

		C=Value of the
		capacitance = 0.01µF. 2) Bandwidth,
		$\Delta \mathbf{f} = (\mathbf{f}_2 - \mathbf{f}_1) \mathbf{H}_{\mathbf{Z}}$
		Where f_2 =Upper cut off frequency,
		Hz
		t_1 =Lower cut off frequency, Hz.
		3) The quality factor of the circuit is given by
		$Q = \frac{f_r}{f_2 - f_1}$
6	Procedure	SERIES RESONANCE CIRCUIT The electrical connections are made as shown in the circuit diagram, Fig (a). Set the amplitude knob to maximum position. The frequency of the oscillator is varied from 1 KHz to 7 KHz in steps of 500 Hz and each time the corresponding milliammeter readings are tabulated. Plot a graph by taking frequency (f in Hz) along the X- axis and current (I in mA) along the Y-axis as shown below. The frequency corresponding to the maximum value of current (I _{max}), which is called the resonance frequency f _r is noted from the graph. The maximum value of current (I _{max}) of a resonance curve for a particular value of C and R is noted. A straight line parallel to X-axis corresponding to the value of I _{max} /H2 is drawn such that the line cuts the curve at two points on either side of the resonance frequency. The frequencies f ₁ and f ₂ corresponding to these points are noted down. PARALLEL RESONANCE CIRCUIT

		Derellel Decomence						
0	Observation	Sorio	Decene	Parallel Res	onance			
0	Table	Series	s Resona	I FICE R =1 KO , C = 0.01	uF.1 =12			
	10010			,				
			Freque	Current				
			ncy	(mA)				
			(kHz)	(
			1					
			1.5					
			2					
			2.5					
			3					
			3.5					
			4					
			4.5					
			5					
			5.5					
			6					
			6.5					
			7					
					I			
		Parallel Resonance						
		R =1 K Ω , C = 0.01 μ F , L = L ₂						
		Froque						
			rieque	Current				
			IICY	(mA)				
			(K⊟Z) ⊿	. ,				
			1.5					
			2					

Page # 28 / 61

		Series Resonance	Parallel
		Resonance	
11	Results &	SERIES RESONANCE	
	Analysis	 The value of the Resonant Frequency from the Graph = 	KHz
	5	3. Bandwidth =KHz	
		4. Quality factor =	
		PARALLEL RESONANCE	
		1. The value of the Resonant Frequency from the formula	I = KHz
		 I ne value of the Resonant Frequency from the Graph = Bandwidth = KHz 	KHZ
		4. Quality factor =	
12	Application	Used in Radio Stations	
	Areas		
13	Remarks		
14	Faculty		
	Signature with		
	Date		

Experiment 05: Fermi Energy

-	Experiment	5	Marks		Date		Date		
	No.:				Planned		Conduc		
							ted		
1	Title	Fe	Fermi Energy						
2	Course		Understand and apply the concept of						
	Outcomes	In	Interference of light. Diffraction of light. Fermi						
			energy and magnetic effect of current.						
3	Aim	Es	Estimation of Fermi Energy of Copper						
4	Material /	C	Copper coil, thermometer, test tube, beaker,						
	Equipment		••						
					C	· 1 / @2017 A	A C A 11 1 1 4	1	

	Required	digital v	/oltm	eter,	
5	Formula			eter,	constant current source.
3	Formula	related	as	ii en	ergy of a given conductor is
				$E_F =$	$\left(\frac{\mathrm{n}\mathrm{e}^{2}\pi\mathrm{A}\mathrm{r}^{2}}{\mathrm{L}\sqrt{2\mathrm{m}}}\right)^{2}\times\left(\frac{\Delta\mathrm{R}}{\Delta\mathrm{T}}\right)^{2}$
		Where	n	=	Electron density of copper,
		8.464x	10 ²⁸ /k	kg ma	ol.
			е	=	Charge on electron,
		1.602x	10 ⁻¹⁹ (C.	
			А	=	Constant for copper,
		7.4x10 ⁻	6		••
			r	=	Radius of the given copper
		wire 0	26x1	0 ⁻³ m	
		wiic, 0.	2071	0 11	
			L	=	Length of the copper wire,
		3.6 m.			
			m	=	Mass of electron, 9.1x10 ⁻³¹
		kg.			
			$\frac{\Delta R}{\Delta T}$	=	Slope of the graph
		obtaine	ed on	plott	ing
					Resistance vs
		Tempe	rature	Ś	
		2. The	Ferm	i terr	perature is calculated as $T_f = \frac{E_f}{K_B}(K)$

		Whe	ere l	ĒF	=	Fermi en	erav o	f the copper
		coil,	(J).	•			5)	
			ł	≺ B	=	Boltzman	n	constant,
		1.38	x10 ⁻²	³ (.	J/K).			
6	Procedure	 Thenerge tube; and in 2) The current voltme of the cu	e expe y has t it is ta mmers e two nt soun eter as e coil erature ote dov ent co in step place ge and	rim to b ken ed i end ce s sh imr s say vn t olir olir olir cu - 0	iental v e deter in a te in a wa s of th throug own ir nersed y abou he vol ng temp f 5°C. hot wa rrent re	wire whose r rmined is wo est tube alon atter bath. e coil is com h a Milli am the circuit of in water bat t 80° C. tage and cur peratures sta atter by cold we ading for ro	esistance ound ove g with a nected t meter an diagram h is hea rent valu rting fro water an om tem	ee and Fermi er an insulating a thermometer o a constant nd Milli ted to a steady ues for om 77°C to ad note down perature. each perature and trature of the pove relation
7	Circuit							
	Diagram							
8	Observation		To de	term	ine the va	riation of Resistar	nce with Ter	mperature:
	Table	SI.	Tem	perat	ture (T)	Current (mA)	Voltage	Resistance
		NO.	°C		٩K		(mv)	(12)
			77					
			12					

11	Results &	1) The Fermi energy of the given of	conductor
	Analysis	is found to be	eV.
		2) Fermi temperature of the given	conductor
		is found to be	K.
12	Application	Helps in Studying thermal properties of ma	terial
	Areas		
13	Remarks		
14	Faculty		
	Signature with		
	Date		

Experiment 06: Rigidity Modulus by Torsional Pendulum

-	Experiment No.:	6	Marks		Date Planne d		Date Condu cted
1	Title	Torsiona	al pendu	ılum.	-		
2	Course Outcomes	∪se a Mo	nd iden ment of	tify the inertia	Elastic of give	moduli n mater	and ials
3	Aim	Determ materia Oscillati	ine the F l of the ç ons.	Rigidity I given wi	Modulus re by To	s(n) of th rsional	e
4	Material / Equipment Required	Circula pendul nuts, p etc.	r pla .um, ste ointer,	te, IF eel or b stop –	R gate prass w clock,	ed to ire with screw	orsional chuck gauge
5	Theory, Formula, Principle, Concept	1. $I = \frac{MR}{2}$ Where in m. 2. $n = \frac{8\pi I}{r^4}$	$\frac{l^2}{d}$ Kg.m , M = M R =	² ass of (Radius	Circular s of the	disc in circula	Kg. r disc

		Where,
		$[l / T^2]_{mean}$ = The mean value of moment of
		inertia over period square for regular
		bodies, kg-m² /sec².
		L = Length of the wire between the two
		chuck nuts (m).
		r = Mean radius of the given wire (m)
		$n = Rigidity Modulus in N/m^2$
6	Procedure,	 One end of the wire is rigidly clamped to the stand and the other end is fixed to the circular disc with the help of chuck nuts as shown in the figure.
		 The chuck nut screwed to the circular plate is rotated through a small angle so that it performs torsional oscillations.
		3. Time taken for 10 oscillations is noted down twice in each case and their corresponding periods are calculated.
		4. The Experiment is repeated for different length (l) of the wire between the chuck nuts.
		5. The length of the shearing wire between two chuck nuts areb measured by using thread and meter scale.
		6. The rigidity modulus 'n' of the material is calculated using the formula,
		$n = \frac{8 \pi I}{r^4} \left(\frac{l}{T^2}\right) \text{N/m}^2$
		> chuck nut
		2 given wire
		TR -A
7	Block Circuit	
	Model	Circular die c.
	Diagram,	
18PH	Y26	Il rights reserved.

	Reaction Equation, Expected Graph	
8	Observation Table	Mass of the circular plate, M =kg. Radius of the circular plate,= m $R=\frac{circumference}{2\pi}$ Length of the wire between the two chuck nuts, l = m.
9	Sample	1. $I = \frac{MR^2}{2}$ Kg.m ²

	Calculations	
		2. $n = \frac{8\pi l}{r^4} \left(\frac{I}{T^2} \right) \text{ Nm}^{-2}$
10	Graph	No graph
11	Results & Analysis	The moment of inertia of the given irregular body, I _o =kg-m². The rigidity modulus of the material of the given wire,n=N/m².
12	Application Areas	 One's body movement to the side when a car makes a sharp turn. Tightening of seat belts in a car when it stops quickly. A ball rolling down a hill will continue to roll unless friction or another force stops it.
13	Remarks	
14	Faculty Signature with Date	

Experiment 07: Transistor characteristics

-	Experiment	7	Marks		Date		Date	
	110.:				rianneu		ted	
1	Title	Tr	ansistor	character	istics			
2	Course		Und	erstand	and use	the pri	nciples	of
	Outcomes		op	peratior	ns of opt	tical fib	ers and	
			semic	conduct	or devic	ces usir	ng a sim	nple
					circu	its.	0	•
3	Aim	St	udy of in	put and o	utput Tra	nsistor cl	naracteris	tics and
		he	nce calcu	late inpu	t and outp	out resist	ance, alpl	na and
		be	beta					
4	Material /	N	PN trar	nsistor,	variable	DC p	ower su	upplies,
	Equipment	D	C micro	o amm	eter, D	C milli	ammet	er, DC
	Required	vc	oltmeter	and co	onnectin	g wires	5.	

	1	
5	Theory, Formula, Principle,	Input resistance, (R _i) $R_i = \frac{\Delta V_{BE}}{\Delta I_B} =K\Omega$
	Concept	Output resistance (Ro) $R_o = \frac{\Delta V_{CE}}{\Delta I_c} =\Omega$
		The current gain ' β ' (common emitter configuration) is given by $\beta = \frac{Ic_2 - Ic_1}{Ib_2 - Ib_1}$
		The current gain ' α ' is given by $\alpha = \frac{\beta}{1+\beta}$
6	Procedure	The circuit connections are made as shown in the figure.
		 To start with, the collector emitter voltage (V_{CE}) is made constant; to be saying 2V. Vary V_{BE} from 0.1V to 0.7V in steps of 0.1V and note down the corresponding base current (I_B) readings. A graph V_{BE} verses I_B at constant V_{CE} is plotted by taking V_{BE} along X-axis and I_B along Y-axis. The graph is drawn for various values of V_{CE}. OUTPUT CHARACTERISTICS
		 The base current I_B is kept constant say 25μA. Vary V_{CE} from 0.1V to 0.8V in steps of 0.1V and note down the corresponding I_C readings. The experiment is repeated for I_B = 50μA.
		 A graph is drawn for various values of I_B, taking V_{CE} along X-axis and I_C along the Y- axis.

10	Graphs		
		$V_{CE} = 2V$	
		Input Characteristics Outpu Characteristics	ıt
11	Results &	The input and output characteristics of the	e
	Analysis	given NPN transistor are drawn and hence	
		1. Input resistance, $(R_i) =K_{\Omega}$	
		2. Output resistance (RO) = Ω	
		3. The current gain, $\beta = $	
10	A 1° /°	4. The current gain $\alpha = $	
12	Application	Used in switching circuits and amplification circuits	
12	Areas Domonica		
13			
14	Faculty Signature with		
	Signature with		

Experiment 08 : Photo diode characteristics

-	Experiment	8 Marks	Date	Date			
	No.:		Planned	Conduc			
				ted			
1	Title		Photo diode ch	naracteristics			
2	Course	Unders	Understand and analyze the principles of				
	Outcomes	photo electric current, & intensity by using					
		sen	niconductor in a	a simple circuit	S.		

3	Aim	Study of V-I characteristics in reverse bias and variation of photocurrent as function of reverse voltage and					
		intensity					
4	Material /	A bat	ttery	Eliminator,	Voltm	eter, M	licro ammeter, photo
	Equipment	diode	e, LE	D,			
	Required	expe	rime	ntal board ar	nd pov	ver sup	ply
5	Theory, Formula,	current wavele	t chang ngth o	ges when it's rev f light.	verse bia	ased junc	tion is illuminated by suitable
	Principle, Concept	Whe curre these r junct	n a p - ent is d minorit tion. W	n junction is reve lue to thermally g y charge carriers hen the diode is i and thus	erse blase generate depend in a glass changes	ed, a sma d electroi s on the i s package the rever	It amount of reverse saturation n - hole pairs. The number of ntensity of light incident on the e, light can reach the junction rse current
6	Procedure				Par	rt - A	
	Tiocedure		1. The di	e electrical conne agram, taking ca	ections a re that pl	re made a hoto diod	as shown in the circuit le is reverse biased.
		2. Vary	the vo	ltage from 0 to 2	volts and	d corresp	ondingly measures the current
		3.Re	peat th	e experiment by	changin	g the pov	ver to 30 mw. Note down the
		4.Dra	aw the	graph by taking	the volta	ge on x'-a	axis and current on Y'-axis as
				sh 5.The curve wi	lown in m ll be obta	nodel gra ained as s	ph. shown in graph.
		1. T	he circ	cuit connection a	Pai re conne	rt- B cted as s	hown in the circuit diagram
		2. Ke	ep the	voltage (V) =1volt	ts consta rrespond	ant, the va	ry the power as shown in the
		3.Drav	w the g	raph by taking p	ower on a	x-axis and	d current on y'- axis as show in
		4.J	oin all	possible points, v	ve get st	graph. raight line	e as shown in model graph.
7	Circuit	Ana	alyze	e and ider	ntify 1	the E	lastic moduli and
	Diagram		Mor	ment of ir	nertia	of gi	ven materials
8	Observation						1
	Tabl		SI	Reverse	Rev	erse	
			No	voltage	Cur	rent	
				V _R	μ)	A)	
					P =	P=	
						.30	
					mW	mW	
			1	0			
			2	0.1			
1				1		1	1
			3	0.2			

		5	0.4		
		6	0.5		
		7	1.0		
		8	1.5		
		9	2.0		
		10	2.5		
9	Sample	No Calcu	lation		
	Calculations			NATURE	OF GRAPH : → (2)
10	Graphs	NATURE	OF GRAPH $\Rightarrow (1)$	10,	Pin(mW)>
	1	< VR	(volts) 10 >		VOLLOW IT PAINA
		between	am thistance	I in	as manager so
		P=10mb	J (UA)	(Au)	the second se
		P-30ml		*	the second secon
		1- 5000	PROGEDURE	CS direct of	
			and success of		
		Thol Make	ractoristics of the	aivon photodiada f	r different intensity of light
11	Results &	The I - V cha	acteristics of the	presented in the arap	r amerent intensity of light h.
	Analysis				
12	Application	Used in R	emote Cont	rol, CD players	, Television
	Areas				
13	Remarks				
14	Faculty				
	Signature with				
	Date				
	Luit				

Experiment 09:	Young's m	odulus by Sin	gle Cantilever method
· · · · · ·	0		

-	Experiment No.:	8	Marks		Date Planned		Date Conduc	
							ted	
1	Title		Youn	g's moc	lulus by meth	[,] Single od	Cantile	ever
2	Course Outcomes		use an Mon	d ident	ify the E inertia c	Elastic r	noduli a materia	and als
3	Aim	To be	determin am by us	ne the Yo ing Singl	ung's Mo e Cantile	dulus of ver Meth	given Alu od.	ıminum
4	Material / Equipment Required	Al tra me	uminum velling n eter scale	beam, slo nicroscop	otted weig be, digital	ght (7x50 vernier c	gms), dig alipers an	gital nd half
5	Theory, Formula, Principle, Concept	Yc pr re ha lo th th sh th tra be yc	bung's bysics operties ctangul ave use ng, 3cn is bean e free otted w e bean avelling eam for bung's r $=\frac{4 g l^3}{b d^3} x \frac{1}{2}$	modulu exper s of r ar bea ed an a n width n is fixe end for eights. m is micros r differ nodulus $\frac{n}{x} =$	s is on iments naterial am. In luminur and 2r ed to a s orce is The no cope. T ent for s is calc -N/m ² - Young m -	e of the whic in th this e n bear nm thic stand w applie on-unifo red us The dep ce is r sulated 's mode mass	e funda h def e form xperime a about k. One ith a so d by h rm ben ing a pression neasure using e using e	amental termine of a ent we 30cms end of crew, at anging ding of digital of the ed and quation
		op	oen end	g I b	=9.8 m - length - bread	/s² n of the dth of th	cantilev ne bean	ver n

	d - thickness of the beam and
	x - depression at the open end
	of the cantilever
6 Procedure	 The experimental setup is arranged as shown in the figure. The digital travelling microscope reading is set to around zero mm. Now the microscope is placed in front of the cantilever with the horizontal telescope is about 5-6 cm from the pointer on the cantilever The telescope is adjusted to see clearly the pointer and it is coincided with the horizontal cross wire. Sogm weight hanger is now loaded to the cantilever due which the cantilever bend the pointer in the microscope fine screw is adjusted such that the pointer again coincide with the horizontal cross wire and travelling microscope reading is noted in Table. Trial is repeated by increasing weight in steps of 50gm and in each case the pointer is again coincided with the horizontal cross wire and recoded in Table. 17. Trial is continued till 350gms and each case coinciding the pointer to the horizontal cross wire the depression is noted. The length of the cantilever is measured from the fixed end till the end of open end using meter scale Using digital vernier the thickness (t) and breadth (b) of the cantilever beam is noted A graph is drawn taking mass m along the x axis and depression x along Y-axis as shown in Figure using Excel. From the straight line graph the slope is determined Young's modulus is calculated using equation-1

7 Experimental Setup.	Diagnam Trim Aluminic	ων μωτ	
	CS Scanner		
8 Observation Table	Depression of the	beam for different m	nass
8 Observation Table	Mass (gm)	beam for different m Digital traveling microscope reading (mm)	nass
8 Observation Table	Mass (gm)	beam for different m Digital traveling microscope reading (mm)	nass
8 Observation Table	Depression of the Mass (gm) 0 50	beam for different m Digital traveling microscope reading (mm)	nass
8 Observation Table	Depression of the Mass (gm) 0 50 100	beam for different m Digital traveling microscope reading (mm)	nass
8 Observation Table	Depression of the Mass (gm) 0 50 100 150	beam for different m Digital traveling microscope reading (mm)	
8 Observation Table	Depression of the Mass (gm) 0 50 100 150 200	beam for different m Digital traveling microscope reading (mm)	
8 Observation Table	Depression of the Mass (gm) 0 50 100 150 200 250	beam for different m Digital traveling microscope reading (mm)	
8 Observation Table	Depression of the Mass (gm) 0 50 100 150 200 250 300	beam for different m Digital traveling microscope reading (mm)	
8 Observation Table	Depression of the Mass (gm) 0 50 100 150 200 250 300 350	beam for different m Digital traveling microscope reading (mm)	
8 Observation Table	Depression of the Mass (gm) 0 50 100 150 200 250 300 350	beam for different m Digital traveling microscope reading (mm)	

Experiment 10 : Series and Parallel Combinations of Spring

-	Experiment	8	Marks		Date		Date	
	No.:				Planned		Conduc	
							ted	
1	Title	Se	eries and para	allel combina	ations of sprir	ng		
2	Course	A	Apply the knowledge of oscillations, frequency					
	Outcomes		and res	sonance	conce	pt and [•]	their pra	actical

		applications
3	Aim	To Determination of given spring constants in Series and Parallel combination.
4	Material / Equipment Required	Springs, Scale, Rigid stand, Slotted weights, Digital Balance etc.
5	Formula	1) Spring constant(K),
		$k = \frac{F}{x} \qquad in Nm^{-1}$
		Where, F – Force applied (= mg) in N. x – Displacement produced in the spring in m
		 Spring constant for Series combination of springs,
		$\frac{k_{Series} = \frac{k_1 k_2}{k_1 + k_2} in \ Nm^{-1}}{k_1 + k_2}$
		3) Spring constant for Parallel combination of springs, $k_{Parallel} = k_1 + k_2 in Nm^{-1}$
6	Procedure	Part-1 1. spring-1 is hooked to the rigid stand with initial dead load(w=100gm).note down the position 'a' of the pointer on the scale in cm. 2. Add some more load into the weight hanger (say 50gm) and note down the weight edge reading as 'b' in cm and write in table. 3. Repeat the trial until the total mass 250gm in steps

of 50gm each time. The corresponding displacement 'b' is noted in table -1 4. Find out average spring constant k_1 from the formula-1 Part-2 1.Now the spring -1 is removed and spring-2 is hooked to the stand. 2. Experiment is repeated by using part-A procedure. And corresponding displacements are tabulate in table-3. The spring constant k_2 is determined by using the formula-2 Part-3 1. Spring-1 & Spring-2 are connected in series and hooked the rigid support as shown in figure. 2. Add 100gm(w) dead load to the series combination and the corresponding displacement 'a' is note down in cm. 3. Add 50gm more load into the weight hanger and note down the weight edge reading 'b' in cm and write in table-3 4. Trial is continued by increasing the mass in steps of 50gm upto 250gm. And the corresponding displacement(b) are noted in table-3 5. The series spring constant(K_s) can be calculated by using formula-3 Part-4 1. The mass es are removed from the spring and the two springs are now connected in parallel as shown in the figure 2. 2. The experiment is repeated by using part 3 procedure. And the corresponding readings are tabulated in table 4. 3. The parallel spring constant (K_p) can be calculated using the formula 4.

10	Graphs,	No (Graph							
	Results &		The spring constants for the springs are							
	Analysis		found to	be, $k_1 = \dots$	N/m					
					k ₂ =					
				I	N/m					
		Th	e spring co	onstants for the	combination of					
			spr	ings are found t	to be,					
			Combin							
			ation	Ineoretical	Experimental					
			Series	K _{series} =	K _{series} =					
			Parallel	K _{parallel} =	K _{parallel} =					
12	Application	Used	l in Clocks, S	Scientific Instrume	nts, Fax Machine					
	Areas	and	Radio Station	ns						
13	Remarks									
14	Faculty									
	Signature with									
1	U									

Experiment 11 : Magnetic Field

-	Experiment	1	Marks		Date		Date			
	No.:	1			Planned		Conduc			
							ted			
1	Title		MAGNETIC FIELD INTENSITY							
2	Course		Anal	yze and	l identif	y the os	scillation	ns,		
	Outcomes	frequency and resonance concept and their								
		practical applications.								
3	Aim	To	determin	ne the ma	gnetic fie	eld intens	ity (B) al	ong the		
		axis of a circular coil carrying current and earth's								
		ho	rizontal r	nagnetic	field (B I	H) by de	flection n	nethod.		
4	Material /		Defle	ection m	agneto	meter,	sprit lev	vel,		

Equ Req	ipment uired	commutator, ammeter, variable power supply and connecting wires.
5 The Forn Prin Con	ory, mula, iciple, icept	The magnetic field intensity, Horizontal component of earth's magnetic field, in T Where
		= Permeability of free space = $4\pi \times 10$ -7 H
		n = number of turns in the coil. (n = 140 turns)
		 I = Current through the coil in amp. a = Radius of the coil in m. (a = 12 cm) x = distance between the centre of the coil and pointer in the compass box in m. = mean deflection in magnetometer in deg. = horizontal component of earth's magnetic field in T.
6 Prod	cedure	 The connections are made as shown in the circuit diagram. Arrange the deflection of the magnetometer in the magnetic meridian of the earth Now align the plane of the coil with respect to 90°-90° line of the magnetometer. Keep the magnetometer exactly at the centre of the coil (for this case x = 0). Pass a current I (say 0.5A) to flow through the coil and the corresponding magnetometer deflections θ₁ and θ₂ are noted. The direction of the current is reversed by using the commutator C and the corresponding the commutator C and the corresponding the commutator C and the com

	1]
		θ ₃ 7 Αν 8 Ca of <i>B</i>	and θ_4 are noted. Verage deflection θ_4 alculate the magn the coil by usin $=\frac{\mu_0 nl}{2} \frac{a^2}{(a^2 + x^2)^{\frac{3}{2}}}$ and al) is calculat etic field a ng the giv Iso B _H .	ed. t the centre /en formula
		9 Ro of m	epeat the experim x (say 5cm, 10 agnetometer along	ent for diffection cm,) by the axis.	erent values / sliding the
		10	Find the average of	of both B a	nd B _H .
7	Experimental Setup. Expected Graph		April A 270 mon	ciecudas coit Secular Contractor	reh coil
0	Observation				
ð	Table Least we				
	Table, Output	SI. No.	Distance from the center of the coil, x in cm.	Magnetic field left hand side of the coil	Magnetic field Right hand side of the coil

11	Results & Analysis	The magnetic field intensity along the axis of the given circular coil is calculated and is as shown in the tabular column. At the center (x = 0) it is found to be B = \dots T and the Earth's horizontal magnetic field intensity is found to be B _H =T
12	Application Areas	Industry and medical applications.
13	Remarks	
14	Faculty	
	Signature with	
	Date	

Experiment 12 : Numerical Aperture

-	Experiment	1	Marks		Date		Date		
	No.:	2			Planned		Conduc		
							ted		
1	Title		Accepta	ance an	gle and	Nume	rical Ap	ertur	e
2	Course		Unders	tand ai	nd analy	yze the	princip	les c	of
	Outcomes		op	peration	s of op	tical fib	ers and		
			semiconductor devices using a simple						
					circu	its.	•		
3	Aim		To det	ermine	the Acc	eptanc	e angle	and	
		N	lumeric	al apert	ure of t	he give	n optica	al fib	er.
4	Material /		Laser source, Optical fiber, Screen, Scale.						
	Equipment				-				
	Required								
5	Theory,	Tł	ne Sine	e of th	e acce	eptance	angle	of	an

	Formula, Principle, Concept	optical fiber is known as the numerical aperture of the fiber. The acceptance angle can also be measured as the angle spread by the light signal at the emerging end of the optical fiber. Therefore, by measuring the diameter of the light spot on a screen and by knowing the distance from the fiber end to the screen, we can measure the acceptance angle and there by the numerical aperture of the fiber.
		The Acceptance angle, $\theta_0 = \tan^{-1} \left(\frac{D}{2L} \right)$ Where D – the diameter of the bright circle formed on screen,
		L – the distance between the optical fiber end and screen. And the Numerical Aperture, $NA = \sin \theta_0$
6	Procedure	 Switch on the laser source and adjust the distance between output end of the optical fiber and the screen 'L' (say 5 cm). Place a graph sheet on the screen and observe the circle formed on the graph sheet. Mark the points 'a','b','c' & 'd' on the inner bright circle as shown in the diagram. Note down the horizontal diameter D₁ and vertical diameter D₂ of the inner bright circle in the tabular column.

		•	Rep valu Find tabu aper	eat th es of L the lar colu ture.	e abo (for 4 Accep umn a	ove s cm, 3 otance nd he	teps f cm, angle nce th	for diff). e from e Nume	erent the erical
7	Experimental Setup. Expected Graph		LS OFC ComD	-> Lasse son C -> optical -> Off bolde -> scale. -> diameter	of c	H Leeen and cl ght spot.	Screen.		
8	Observation		-		. . .				
	Table, Look-up	Tr		Hori	Vert	Mea	Acc	Num	
		ail	(in	zont	ical	n	epta	erica	
		Ν	С	al	dia	Dia	nce		
		Ο.	m)	dia	met	met	angl	aper	

12	Application	Used in Remote Control, CD players, Television,
	Areas	switching circuits etc.
13	Remarks	
14	Faculty	
	Signature with	
	Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Ex	Course Content or Syllabus	Conte	Bloo	Fin	Identif	Instructi	Assessme
pt-	(Split module content into 2	nt	ms'	al	ied	on	nt
#	parts which have similar	Teach	Learn	Blo	Action	Method	Methods
	concepts)	ing	ing	om	Verbs	s for	to
		Hours	Level	s'	for	Learnin	Measure
			s for	Lev	Learni	g	Learning
			Conte	el	ng		
			nt				
A	В	С	D	Ε	F	G	Н
1	Radius of curvature of plano	3	- L2 - L2	L3	Apply	Experiment	Slip Test
	convex lens using Newton's		L3				
	rings.						
2	Calculation of Dielectric	3	- L2	L3	Apply	Experiment	Slip Test
	constant by RC charging and						
	Discharging						
3	Determine Wavelength of	3	- L2 - L 3	L3	Use	Fyneriment	-Slip Test
	semiconductor laser using					Experiment	
	Laser diffraction by calculating						
	grating constant.						
4	Study Series and parallel LCR	3	- L2 - I 3	L3	Apply	Experiment	-Slip Test
	resonance and hence Calculate						
	inductance, band width and						

	quality factor using series LCR Resonance					
5	Estimation of Fermi Energy of Copper	3	- L2 - L3	L3	Apply	Experiment Slip Test
6	Rigidity Modulus by Torsional pendulum.	3	- L2 - L3	L3	Use	ExperimentSlip Test
7	Study of input and output Transistor characteristics and hence calculate input resistance, alpha and beta	3	- L2 - L3	L3	Apply	Slip Test Experiment
8	Draw photo diode characteristics and calculate power response	3	- L2 - L3	L3	Use	Slip Test Experiment
9	Young's modulus of a beam by Single Cantilever experiment.	3	- L2 - L3	L3	Use	Slip Test Experiment
10	Determination of spring constants in Series and Parallel combination	3	- L2 - L3	L3	Apply	Slip Test Experiment
11	Determination of Magnetic field intensity at the center of a circular coil carrying current (by deflection method).	3	- L2 - L3	L3	Apply	Slip Test Experiment
12	Determine Acceptance angle and Numerical aperture of an optical fiber	3	- L2 - L3	L3	Apply	Slip Test Experiment